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Abstract

As interest in the distributional effects of climate policies gains prominence, designing elec-

tricity tariffs that are both efficient and equitable becomes critical. Efficiency often favors the

shift from time-invariant to time-of-use (ToU) or real-time prices (RTP), but this transition

may have distributional implications. We develop a framework to assess the implications and

the channels through which distributional impacts manifest. Central to our approach is a novel

method that infers individual household income by combining zip-code-level income data with

household-level electricity consumption. We demonstrate the value of this method in the Span-

ish context. First, we show that using more granular estimates of income has an impact on the

distributional assessment of electricity tariffs. Second, we find that the potential distributional

impact of RTP is very modest compared to the impact of ToU. The most salient effect of RTP

is to increase bill volatility, particularly so for the low-income group.
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1 Introduction

Quantifying the distributional effects of climate policies is becoming increasingly central to both

academic research (Deryugina et al., 2019) and policy discussions (OECD, 2024). Beyond envi-

ronmental justice, equity concerns can hinder the political and social support necessary for imple-

menting efficient climate policies. Therefore, understanding how policy impacts vary across income

levels is crucial for designing effective and equitable measures that are socially acceptable (Fabra

and Reguant, 2024). However, despite growing interest in this area, the lack of individual-level

income data often limits researchers’ ability to make precise assessments.

In response to this data limitation, we propose a novel method to infer individual-level income

in contexts where researchers have access to detailed socioeconomic data but lack precise household

income information.1 Our method fills this gap by offering a robust approach to estimate income at

the individual level, which is particularly useful for distributional analyses of climate policies, such

as carbon pricing (Chanut, 2021). Beyond climate policy, this method has wider applications in

fields such as public economics (Chetty et al., 2023), education (Bleemer and Mehta, 2022), finance

(Gross et al., 2021), and labor economics (Gustman and Steinmeier, 2000).2

We demonstrate the utility of our method by analyzing the distributional effects of alternative

electricity pricing policies, particularly the shift from time-invariant to Real-Time (RTP) and Time-

of-Use (ToU) pricing. Economists have long advocated for RTP as an efficient policy tool (see, e.g.,

Borenstein (2005) and Borenstein and Holland (2005)). Still, its adoption has been slowed by

concerns about potential adverse distributional impacts across households (Joskow and Wolfram,

2012).3 ToU pricing is more widely adopted, though its desirability from an efficiency standpoint

remains debated. While it does not deliver all the benefits associated with fully dynamic pricing,

its predictability and salience may elicit a stronger demand response (see Fabra et al. (2021) and

Enrich et al. (2022)).

Our empirical analysis leverages data from the Spanish electricity market, the only country

where RTP has been broadly implemented as the default option for households, and where ToU

has become compulsory.4 Our analysis, based on hourly smart meter data from more than a million

1In many cases, databases contain individual-level data (e.g., on consumption, health, education) but, due to
privacy concerns, only provide zip code-level information. This prevents researchers from matching households to
income data at finer levels of aggregation (e.g., census tracts). Similarly, while household characteristics are well-
documented in Census data, some countries only offer detailed income statistics by zip code.

2For example, Chetty et al. (2023) examine the heterogeneous impacts of COVID-19 on household spending
by using median household income at the zip code level to proxy for cardholder income. Similarly, Bleemer and
Mehta (2022) use zip code-based income data to quantify the wage return for majoring in economics. Gross et al.
(2021) use zip code median income to analyze how bankruptcy laws affect the cost of credit. Lastly, Gustman and
Steinmeier (2000) study retirement decisions using wage data to estimate household income, relying on proxy methods
in years when survey data are unavailable. In all these cases, our method could improve the understanding of income
heterogeneity within zip codes, allowing for richer distributional analyses.

3Levinson and Silva (2022) show how preferences for income redistribution influence the design of the electricity
pricing scheme.

4In some countries, such as Norway and New Zealand, RTP is offered by competitive retailers, but it is not the
default option. For instance, Borenstein (2013) notes: “I’m aware of no place in the U.S. where time-sensitive rates
are the default for residential customers.” Similarly, the European Commission (2009) states, “The case of Spain with
a regulated default dynamic price contract is unique. Pébereau and Remmy (2023) explore the barriers to adopting
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Spanish households over 18 months, offers a highly representative assessment of the population-wide

impacts of RTP and ToU.

Although smart meter consumption data are highly detailed, there is no household-level income

data available, which is crucial for assessing the distributional effects of electricity pricing policies.

The standard approach (i.e., assuming all households within a zip code share the same income

distribution based on national quintiles) would suggest that the impacts of RTP and ToU are

either uncorrelated with income or only weakly so. However, this method overlooks significant

within-zip-code heterogeneity, potentially introducing a bias (Borenstein, 2012). By accounting for

within-zip-code heterogeneity, our method for estimating household income allows us to uncover

potential distributional effects that would otherwise remain hidden.

Approach To estimate household-level income data, our proposed method combines household

electricity consumption data with zip code income distributions. First, we apply flexible classifica-

tion algorithms to group households into representative types based on their electricity consumption

profiles. Additionally, we categorize households by their contracted power, which correlates strongly

with income. Once households are classified into types, we estimate each household’s income dis-

tribution as a function of its type, individual characteristics, and zip code attributes. We do so by

imposing that the inferred distribution of income based on our household types, aggregated at the

zip code level, matches the observed income distribution at the zip code level using a generalized

method of moments (GMM).

The critical assumption for identifying the impact of household types on income is that the set

of potential types is shared across zip codes within a group of nearby zip codes.5 This assump-

tion enables us to estimate the income distribution for each type that rationalizes the observed

income distributions at the zip code level. We then derive household-level income distributions

by combining the type-level income distribution with the household’s assigned type. Although

this identification approach is non-parametric, we also implement a semi-parametric version that

incorporates functional form assumptions on how types, individual characteristics, and zip code

demographics influence the distribution of income.

Since the household classification algorithm is sensitive to choices made by the researcher, we

conduct three types of robustness checks to validate our results. First, we perform Monte Carlo sim-

ulations. Second, we cross-validate our predictions by leaving some zip codes out of the estimation

process and then predicting their outcomes. Third, we compare our inferred consumption-income

patterns with data from the Consumption Expenditure Survey (CEX).6 As an additional valida-

tion, we demonstrate that, as expected, contracted power is strongly and positively correlated with

our household income estimates. In contrast, assigning each household to the observed income

RTP in New Zealand.
5Not all types need to be present in every zip code within a group, as the probability of a specific type in a given

zip code could be zero.
6Ideally, one would like to have income data at the individual level to compare the performance of our proposed

method with only zip code level distribution data versus the performance using the individual-level data. However,
as in most cases in practice, individual income data is not available, which justifies our contribution.
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distribution of its zip code would mask this correlation, underscoring the value of our method in

achieving more accurate predictions.

Main Findings We apply our proposed method to assess the distributional implications of tran-

sitioning from time-invariant electricity prices to Real-Time Pricing (RTP) and Time-of-Use (ToU)

pricing in Spain. The results indicate that the switch to RTP has very modest – almost negligible

– distributional effects, at least within the time frame covered by our analysis. In contrast, the

adoption of ToU pricing yields progressive distributional outcomes. Specifically, the shift reduces

electricity bills for low-income households by an average of 0.6 e/month, while increasing bills

by approximately 0.9 e/month for households in the highest income quintile.7 Interestingly, the

distributional effects of ToU would remain hidden if we did not account for within-zip-code income

heterogeneity.

Even though the bill impacts are modest, RTP can pose challenges for lower-income households

facing tight monthly budgets (Jack and Smith (2020); Berkouwer and Dean (2022)). Our results

show that bill volatility increases for all income groups, with the largest bill volatility affecting the

lowest quintile. In contrast, ToU mitigates bill volatility, particularly for the low-income group.

Differences in household consumption patterns explain these findings. High-income households

tend to use disproportionately more electricity during peak hours, leading to relatively larger bill

increases under both RTP and ToU tariffs, as electricity prices are higher during those hours. In

contrast, low-income households consume more electricity during the winter months. While this

seasonal pattern has no impact on the distributional effects of ToU – since ToU rates are fixed

across months – it does affect the distributional outcomes under RTP, where wholesale prices vary

seasonally. However, this seasonal impact is fully offset by within-month price variation, which

explains the minimal distributional effects of the shift to RTP.

We identify two primary channels driving household consumption patterns: heating, ventilation,

and air conditioning (HVAC) usage and household location. Electric heating (EH) and air condi-

tioning (AC), which together account for nearly 30% of a typical household’s annual consumption,

vary significantly across regions based on local climate and gas infrastructure availability. Addi-

tionally, EH is negatively correlated with income, while AC is positively correlated.8 Given that

electricity prices are substantially higher in winter and lower in summer, the reliance on electric

heating (EH) by low-income households and on air conditioning (AC) by high-income households

explains the regressive effects of exposing households to monthly price variation under RTP (but

not under ToU). This seasonal component offsets the progressive effects of within-month price

variation, which are present in both RTP and ToU.

Arguably, these findings are location-specific, as they depend on customer equipment, demand

patterns, and the nature of electricity supply, all of which vary across countries and over time.

7 In percentage terms, these figures correspond to a 1.2% decrease in bills for low-income households and a 1.5%
increase for high-income households.

8In Spain, older buildings often lack formal heating systems, and inefficient electric heaters are used, contributing
to the negative income correlation.
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Beyond assessing the distributional implications of RTP and ToU in the Spanish context, our

contribution lies in disentangling the underlying channels and proposing a novel methodology to

quantify them.

The structure of our paper is as follows. We next discuss the related literature. Section 3

describes the data that we use to estimate household income. Section 4 describes the methodology

used to infer individual household income and the income estimation results. Section 5 provides

background of the Spanish time-varying electricity pricing and quantifies the distributional impli-

cations of RTP and ToU, and Section 6 explores the channels. Last, Section 7 concludes.

2 Related Literature

Our paper contributes to two strands of the literature. First, it contributes to the methodological

literature on inference and clustering by proposing a novel approach for inferring household-level

income using consumption data and zip code-level information. Second, it advances the study of

alternative electricity pricing policies by examining their distributional implications across different

income groups.

Income inference and methodology Our method to improve income predictions relates to the

ecological inference problem, which precisely focuses on the challenge of drawing conclusions about

individual effects from aggregate data, known as the ecological fallacy (Robinson, 1950). The lack

of individual-level data hinders our ability to understand the distributional implications of many

policies, as highlighted in Banzhaf et al. (2019). A first strand of this literature tries to find bounds

to individual effects while remaining flexible, e.g., as in the seminal paper of Goodman (1953).

This approach has been extended to electricity pricing, under the bounding assumption that richer

households consume more (versus randomly within a group), with applications to non-linear pricing

(Borenstein, 2012) and solar net-metering tariffs (Borenstein, 2017). While this method is intuitive

in a single-dimensional setting (e.g., total quantity consumed needed to compute monthly non-

linear prices), it is less obvious how to make bounding assumptions over the entire consumption

vector of households (e.g., quantity consumed over time), which is needed to estimate the impacts

of real-time pricing.

Our paper falls into the second strand of the ecological inference literature, which provides a

statistical framework to probabilistically infer individual income. King (1997) presents seminal work

with a two-by-two problem, inferring non-black and black voting behavior for Democrats versus

Republicans, using Bayesian methods. Like our framework, the estimation relies on the observation

of several precincts (in our case, zip codes). The original work is limited to categories, although

it has been extended, e.g., by Greiner and Quinn (2009). Our method extends this literature by

predicting income that is also based on individual-specific covariates. By using constrained GMM

approaches and semi-parametric logit-style functions, it is also computationally very tractable.

Methodologically, we combine methods of clustering observations with ideas from industrial
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organization to back out individual primitives from outcome variables (in our case, income), as in

demand estimation models.

The first step of our approach relates to the clustering literature. While most finite mixture

models assume parametric (often normal) distributions (McLachlan et al. (2019)), Bonhomme

et al. (2016) develop a nonparametric method using repeated data for identification.9 Closer to

our setting, Bonhomme and Manresa (2015) introduce a grouped fixed-effects (GFE) estimator to

capture discrete, time-varying heterogeneity via clustering. Bonhomme et al. (2022) extend this

idea with a two-step GFE estimator: first clustering with kmeans, then estimating group fixed

effects. They show that even when true heterogeneity is continuous, treating it as discrete serves as

an effective dimension reduction strategy. Our first step is similar, as we use individual moments

for clustering to reduce the dimensionality of the data. However, in the second step, instead of

estimating a regression model, we recover group-specific income distributions by matching them to

the aggregate income distribution at the zip code level.

Our approach is also related to the demand estimation literature using partial microdata. Like

Berry et al. (2004), we observe detailed consumption behavior, but we lack individual income data

and therefore cannot use micro-moments. While Berry et al. (1995) show how to use market-level

demographics to identify demand systems, directly estimating parametric electricity consumption

demands is difficult here due to the computational burden of inverting high-frequency consumption

data and the complex, heterogeneous link between income and electricity use.Instead, our goal here

is to infer their income, rather than characterize their entire demand system. To address this, we

use a simplified two-step estimator. Like the fixed-grid approaches in Fox et al. (2011) and Bajari

et al. (2007), we discretize household types to reduce complexity. This transforms the second step

into a constrained GMM problem. Our method allows for rich group-level heterogeneity without

imposing a specific functional form between income and consumption.

Electricity pricing We contribute to the literature assessing the imapct of time-varying pricing.

Time-varying pricing improves efficiency by encouraging conservation and load shifting during

expensive hours (Jessoe and Rapson (2014), Burger et al. (2019), Faruqui et al. (2009), Wolak

(2011), Allcott (2011)), while also supporting investment efficiency (Borenstein, 2005), limiting

market power (Poletti and Wright, 2020), and may even generate positive environmental impacts

(Holland and Mansur, 2008).10 Still, real-time pricing (RTP) has been largely confined to industrial

customers (Blonz, 2022).

The literature finds a variety of distributional impacts. Borenstein (2013) finds CPP has mini-

mal effects on low-income households, while Faruqui et al. (2010) suggest they may benefit due to

flat usage and higher responsiveness. For RTP, Horowitz and Lave (2014) find that smaller, often

9The energy engineering literature (e.g., Haben et al. (2015), Al-Wakeel et al. (2017), Melzi et al. (2015), and
Tureczek and Nielsen (2017)) has also used machine learning models to classify electricity load curves but, as far as
we are aware, it has not used this approach to infer household income.

10Schittekatte et al. (2024) compare ToU and CPP pricing under high renewables, recommending a combined
approach.
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low-income households pay more, while larger ones save. Leslie et al. (2024) find RTP benefits

areas with more renters, older residents, and lower home values. Borenstein (2007) shows that

many industrial customers would lose under RTP unless highly price-responsive.

While our findings align with prior research, we emphasize that the effects on low-income

households vary significantly based on factors such as the type of time-invariant pricing (monthly

vs. annual), consumption patterns, HVAC systems, and geographical location. By identifying

these channels, our analysis offers insights that can help other jurisdictions anticipate and mitigate

potential concerns about the distributional impacts of RTP before its implementation.

3 Data

The focus of our application is to quantify the distributional effects of alternative electricity pricing

rules – specifically, Real-Time Pricing (RTP) and Time-of-Use (ToU) – relative to time-invariant

pricing. In this section, we describe the data used to infer household income, which includes

hourly electricity consumption, contracted power, and demographic characteristics. We also provide

background on the relevant pricing mechanisms within the Spanish electricity market.

3.1 Hourly Electricity Consumption

Our dataset includes information on over three million Spanish households, covering the period from

January 1, 2016, to May 31, 2017.11 They are distributed across various regions of the country, but

most of them are located in Madrid and Galicia.12 Importantly, the data come from a distribution

company, which allows us to observe all households in a given geography, rather than a selected

sample of customers.

After filtering out outliers (specifically, households with excessive zero consumption observations

or missing zip code data)13 and excluding households outside the regulated utility’s service areas,14

we retain a final sample of 1,303,350 households spread across 750 zip codes. Due to missing data,

we also exclude observations from December 2016 and May 2017, leaving us with 15 months of data

(January to November 2016, and January to April 2017).15

Additionally, the dataset provides information on each household’s access tariff, contracted

power, and postal code. Contracted power, measured in kW, is the maximum consumption allowed

at any point in time.16 Since households pay a fixed monthly fee as a function of their contracted

power, which can be between 20 and 35% of their bill on average, they have incentives to contract

11The data were provided by Naturgy, the third largest utility company in Spain.
12The geographic distribution of households is illustrated in the Appendix in Figure A.2
13The outlier removal algorithm excludes a household if more than 25% of its consumption observations are zero,

or if more than 5% of observations are null.
14The default provider in each region is responsible for offering the default RTP tariff, so households outside a

utility’s regulated territory cannot participate in the RTP scheme.
15The smart meter data lacks nearly all consumption data for December 2016, and is very incomplete for May

2017.
16If households go over the limit, the meter trips and households lose power until they go below the limit.

7



it according to their electricity needs and their willingness to pay to avoid being tripped if they go

over the limit. For the purposes of our estimation, this is an important variable, as it is observed

for each household, and it tends to be positively correlated with income. Households with high

income tend to live in larger houses and have a higher willingness to pay to avoid the inconvenience

of power limits.

3.2 Demographic Data

We obtain demographic data from two sources: the Spanish National Institute of Statistics (INE)

and a private data provider, MB Research. The INE provides demographic information at the

census district level, including population, age, gender, education, dwelling types, and income

distribution data.17 In contrast, MB Research offers income distribution data specifically for zip

codes.18 We complement our data with individual-level energy consumption survey data (CEX),

which includes individual household income decile and region.19

The consumption survey data show that higher-income households tend to report higher elec-

tricity consumption (see Appendix A.4). However, these basic patterns are not reflected when

using only zip code-level income information, raising concerns about the informativeness of relying

solely on zip codes. This issue is particularly pronounced in Spain, where zip codes still contain

substantial heterogeneity, and is the motivation for our proposed approach to better infer income.20

4 Inferring the Household-Level Distribution of Income

To better understand the distributional implications of RTP and ToU, we propose a two-step GMM

approach to improve our estimates of household income distributions.

Let us assume that household hourly electricity consumption during the day (denoted kWhih,

suppressing day index) is determined by a set of variables, such as temperature and seasonal

components for their zip code (denoted xih) and lifestyle (represented by their type θi), plus some

random shocks εih,

kWhih = f(xih, εih|θi). (1)

The proposed GMM methodology follows two steps. In the first step, we classify households

into different types based on their contracted power, their electricity consumption patterns, and

their HVAC ownership, which we infer from their hourly electricity consumption. Based on these

results, we construct the aggregate probabilities of types for each zip code.

17Since we have each household’s zip code but not its census district, we match census districts to postal codes and
aggregate the data at the postal code level.

18Appendix A contains a more detailed description of these data sources.
19See Appendix A.4 for a detailed description of the data.
20Moreover, the problem is exacerbated by the fact that we are focusing on a single utility, rather than the entire

Spanish market.
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Allowing the household’s discrete type θi to be correlated with its income helps us to identify

how income correlates with electricity consumption while reducing the dimensionality of the income

distribution that we need to estimate. For identification purposes, we allow these types to be shared

across similar geographies.

In the second step, we assume that each type has a fixed distribution of income, which is un-

known but could be a function of covariates. We estimate the probability distribution by exploiting

aggregate moments. The implied income distribution from the types within a zip code should

match the observed zip code income distribution. These aggregate moments help us identify the

probability that each household type belongs to a national quintile.

More formally, our objective is to uncover the income distribution of discrete household types,

θ ∈ Θ = {θ1, . . . , θN}, which can potentially also be a function of covariates. To define the income

distribution, we partition the income domain into K bins, inck ∈ {1, ..,K}, using national income

quintiles (K = 5). For the case without covariates, let ηnk = Pr(inck|θn) denote the discrete

probability of household type θn belonging to quintile k. The goal is to estimate ηnk for each

income bin k and type θn, which we then apply to each household based on their types. This gives

us an expected income distribution. In practice, we also allow these probabilities to depend on

observables.

Next, we explain each step in more detail.

4.1 Step 1: Identifying Household Types

We define household types based on their contracted power, which we observe; their HVAC own-

ership status, which we infer from the correlation of their hourly consumption and temperature

across seasons; and their hourly consumption patterns, which we construct from the smart meter

data.

4.1.1 Classification by contracted power

As already explained, households pay a fixed monthly fee based on contracted power, which is

strongly correlated with income. Contracted power can vary from 1 to 10 kW (with 0.1 increments),

but most households in our sample chose 2.5-5 kW. Figure A.1 depicts its distribution. We classify

households into two groups, depending on whether their contracted power is below or above 4

kW. 52% of the households in our sample belong to the low-contracted power group (L), and the

remaining 48% belong to the high-contracted power group (H). Classifying households according

to their contracted power is powerful because we observe it at the household level.

4.1.2 Classification by heating and air conditioning (HVAC) status

As detailed in Appendix B, we identify HVAC status (electric heating and/or air conditioning)

by testing the seasonal correlation of hourly consumption and hourly temperature. Intuitively, we

infer that a household has electric heating if it uses a relatively high amount of electricity during
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cold spells. Similarly, we infer that a household has air conditioning if it uses a disproportionately

high amount of power during hot days. To calibrate the thresholds, we use a GMM estimator that

matches the macro moments of the HVAC ownership rate at the regional level. This algorithm

follows and complements the engineering literature that uses high-frequency data to identify HVAC

status.21

Because the classification is based on individual patterns, the output of the procedure is a

household-level indicator on whether the household used AC, electric heating, or both, creating a

generated variable that allows us to classify households individually. Because our sample covers

mostly the northern part of Spain, where people rarely use AC, and given that we are limited

in the number of types that we can allow, we focus on electric heating (EH) for the household

classification in the estimation.

4.1.3 Classification by consumption patterns

We perform the estimation separately for each province in our data (nine provinces in total). Within

each province, we classify households based on their observable characteristics and consumption

patterns.

We use a kmeans clustering algorithm to classify households based on moments of their hourly

electricity consumption. In total, 198 variables are generated to capture daily and seasonal con-

sumption patterns for each household. We then apply a kmeans clustering algorithm to all house-

holds in the same province. Our 198 variables include:

• weekday average daily consumption and weekend average daily consumption in kWh;

• mean and standard deviation of hourly consumption share for each of the 24 hours by weekday

and weekend;22

• four variables capturing seasonal patterns in consumption: the ratio of winter consumption to

annual consumption, the ratio of summer consumption to annual consumption, the standard

deviation of monthly consumption, and the correlation of monthly consumption and the

monthly flat price.

The first two sets of variables (194 variables in total) reflect household electricity consumption

patterns within the day-month, while the remaining four variables reflect seasonality across months.

The former mainly depend on the household’s lifestyle, while the latter are greatly affected by HVAC

ownership.

4.1.4 Final classification

We first classify households according to their individually observable contracted power and their in-

dividually inferred ownership of electric heating: (L,EH), (L,NoEH), (H,EH), and (H,NoEH).

21See Westermann et al. (2020) and Dyson et al. (2014).
22Hourly consumption share is defined as the hourly consumption divided by the total consumption for the day.
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Figure 1: An example of kmeans types in Coruña with low contracted power and no electric heating
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Notes: This figure provides an example of the kmeans classification of households in Coruña with low contracted

power and no electric heating. The three clusters group households according to their electricity consumption profiles

throughout the day (in shares). The first 24 hours are for weekdays, and the last 24 hours are for weekends.

We then use the kmeans clustering algorithm based on the above 198 variables to further clas-

sify households within each of these categories. To avoid small sample issues, we only allow for

further heterogeneity in provinces and categories for which we have a sufficiently large number of

households.23

Figure 1 illustrates an example of kmeans classification. It shows the average daily consumption

patterns for weekdays and weekends of households with low contracted power and no electric heating

in Coruña. One can see that the algorithm picks up a variety of consumption patterns: households

that consume in the evening (type 0), households that consume slightly more at night (type 1),

and households that consume mostly during lunchtime and in the evening (type 2).

4.2 Step 2: Identifying the Income Distribution of each Type

From step 1, we get a type θgi , assigned to each household in a province g. The type space for

each province g is Θg ≡ {θg1, θ
g
2, ...θ

g
Ng}, where θgn contains information on whether the household’s

contracted power is low (L) or high (H), on whether it owns electric heating (EH) or not, and

on its kmeans type. In our main specification, we set the number of types to be Ng = 12 for all

provinces, with 3 kmeans types within each contracted power-EH category. We estimate the types

and income distribution for each province separately. From now on, we suppress the superscript g

for clarity.

23In practice, we reduce the kmeans clustering types if a type contains fewer than 1,000 households. For example,
in a province where electric heating is rare, we reduce the number of types within that category.
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We denote the share of type n households in zip code j as P j(θn), and compute it as follows,

P j(θn) =
1

HHj

∑
i

1(θi = θn), (2)

where HHj is the total number of households in zip code j.

Conceptual non-parametric estimator Once we have a distribution of types at the zip code

level, we can uncover the unknown probabilities of types having a certain income by using across-

zip-code restrictions in the share of types. For example, if the income at a certain zip code is

relatively high, and if there are relatively many households in that zip code with high contracted

power, the algorithm will conclude that the likelihood of high income for the high contracted power

type is larger. Assuming that the underlying income distribution of a type θn is the same across

zip codes within a province, we get the following moment conditions by matching the observed and

predicted zip-code-level income distributions:

min
η

∑
j

ωj

K∑
k=1

(Prjk −
∑
θn∈Θ

ηnkP
j(θn))2, (3)

s.t.

K∑
k=1

ηnk = 1 ∀θn ∈ Θ, (4)

where ωj is a weight representing the population of zip code j, Prjk is the share of households in

income quintile k in zip code j, and ηnk is the probability that type θn belongs to quintile k.

The above objective function (3) uses a set of (K − 1)× Number of zip codes within the group

moments to identify the (K − 1)×N unknown probabilities of income, η, where K is the number

of income bins and N is the number of types. Thus, we need at least N zip codes to identify η.

In practice, a larger number of zip codes can help reduce noise, which can otherwise lead to an

inaccurate classification of consumer types and P j(θn).

In our application, the number of zip codes that can be naturally grouped together is limited

(e.g., a given geographical area), and thus, we are constrained in the number of types that we can

accommodate. In our main classification, we have only 12 types per province. Therefore, in our

main implementation, we rely on a semi-parametric estimator that can provide additional flexibility

at the cost of some functional form assumptions.

Main semi-parametric estimator We implement a semi-parametric estimator that allows the

income distribution of types to exhibit differences across individuals and zip codes. It has the

advantage of allowing individuals classified into the same type to have distinct income distributions,

which otherwise could be too strong of an assumption with a limited number of types.

More concretely, we specify that the probability that a household of type θi belongs to the income

bin k depends on individual characteristics (xi) and zip code demographics (zj). This makes the
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method computationally more intensive, as we need to keep track of income probabilities at the

individual level, rather than at the type level.

We use the following moment conditions by matching the observed and predicted zip code

income distributions as above, but integrating over all households rather than using the aggregate

shares of types:

min
η,α,β

∑
j

ωj

K∑
k=1

(Prjk −
∑
i∈Ij

Prk(θi, xi, zj))
2, (5)

s.t. Prk(θi, xi, zj) =
exp(δijk)∑K

k′=1 exp(δijk′)
, ∀k ∈ [1, · · · ,K], (6)

δijk = αk + βθi0 × k + β1xi × k + β2zj × k, (7)

where ωj is a weight representing the population of zip code j, Prjk is the share of households in in-

come quintile k in zip code j, and Prk(θi, xi, zj)) is the predicted probability of household i from zip

code j belonging to income quintile k. θi is the household’s kmeans type, xi includes the house-

hold’s contracted power (continuous variable) and their binned monthly electricity consumption

(dummy variables), and zj represents the demographic variables of the zip code.

Unlike in our previous specification (3), the probability of income Prk is now a function of these

variables. We use classic discrete choice logit formulas to parameterize the relationship between

observed variables, household types, and income quintile probabilities, as shown in equations (6)

and (7). αk is a common income-bin dummy. βθi0 are type-specific coefficients and (β1, β2) are the

same for all types. βθi0 × k explains how type θi’s income distribution differs from the average. If

βθi0 > 0, it means the type is richer than average in a first-order stochastic dominance (FOSD)

sense. This ordering means that one type’s income distribution cannot have higher probabilities in

both the richest and the poorest bins compared to another type.24

In our main specification, we focus on individual characteristics as they give the most flexi-

bility to the individual distribution of income, with xi including a household’s contracted power,

consumption, and peak consumption, as well as the slope estimates from the HVAC inference step

to allow for additional flexibility on heating and cooling behavior.25 Including these components

allows the household-level income distributions to be more flexible within and across zip codes.26

β1xi captures whether higher contracted power within a type is correlated with higher income

(β1 > 0). β2zj captures the correlation of characteristics and income. We would expect lower

socio-demographics in the zip code to be negatively correlated with the distribution of income,

24The model can also accommodate a quadratic specification, which would relax this parameterization, yielding
similar results.

25Computationally, we group these characteristics into 15 bins each to make the integration of zip code probabilities
faster. We include a range of other controls in the appendix. The results are similar between the non-parametric
approach and various alternative parameterizations of the semi-parametric approach.

26Consider the following two households: Household A has low contracted power and belongs to a “richer” type,
while household B has higher contracted power and belongs to a “poorer” type. Assuming β1 > 0, which implies
that households with higher contracted power are wealthier, the income distributions of households A and B would
not necessarily have a FOSD relationship.
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Figure 2: Validation with CEX data
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Notes: This figure represents the relationship between household income quintiles (on the x-axis) and contracted

power (on the y-axis). The squared green line represents the estimated relationship using our two-step method, while

the dashed gray circled line uses only the zip code income distribution. To validate our estimation, the triangle

black line depicts the relationship from the CEX survey. Although the CEX survey only reports total annual bills

and annual electricity consumed, we infer the contracted power using information about regulated contracted power

prices (in euros per KW), taxes (in percent), other fees (in euros) and average annual energy component prices (in

euros per KWh) provided by the CNMC (Spanish Competition Authority and Regulator).

keeping constant the type and other characteristics (e.g., for unemployment, we would expect

β2 < 0). Both βθi1 and βθi2 contribute to the distribution of income of a given type being different

between zip codes. Furthermore, two households within the same zip code with the same type can

have different income distributions due to the effect of β1.

The final outcomes of interest from the approach are the probabilistic assignments of households

to income quintiles, given by the predictions ηik ≡ P̂ rk(θi, xi, zj).

4.3 Validation of inferred income

Using the estimated income distribution for each type, we calculate the implied income distribution

for each household. Our method aims to better infer the expected income distribution of households.

To understand the added value and performance of our estimator in small samples, we performed

three checks on our method: validation from CEX data, a Monte Carlo simulation, and out-of-

sample validation.

First, we use the CEX data to assess the validity of our estimates. Figure 2 compares the

relationship between contracted power and income, which are known to be highly correlated. The

dashed line shows weak correlation using aggregate zip code demographics, with an average con-

tracted power of around 4 kW across quintiles. In contrast, our estimated income distribution

shows a stronger correlation: households in the low quintile average less than 3.5 kW in contracted

power, while those in the high quintile average 5 kW. Using the CEX data supports an even steeper
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relationship, as shown by the circled black line.

We use the same CEX data to compare the relationship between annual electricity consumption

and income quintile in Appendix C.1. In Figure C.1, we compare the estimated results with the

CEX survey data. In all provinces, the näıve approach captures only across-zip code income

variation and cannot explain the relationship between income and consumption. On the contrary,

the GMM approach performs clearly better even though the relationship between income and

electricity consumption is flatter than in the CEX survey data.27

Second, in Appendix C.2, we perform a Monte Carlo simulation in which we assume that we

know each household’s income. We show that the estimator correctly recovers household income

in expectation and examine what happens when some of our assumptions and choices differ from

the true data-generating process. Overall, the Monte Carlo simulation helps highlight the value of

our approach. With enough flexibility, we can reveal within-zip code heterogeneity that would be

muted using a näıve approach. As long as we allow for sufficient flexibility and have enough data,

this classification appears to improve the inferred expected household income.

Finally, in Appendix C.3, we perform an out-of-sample validation of the methodology by assess-

ing how well our model predicts the distribution of income of out-of-sample zip codes, with positive

results. This is in line with the results from our Monte Carlo simulation.

Our methodology does not allow for precise identification of individual household income, but

rather estimates its expected distribution. As such, it should not be viewed as a full substitute for

micro-level data, but rather as a refinement over aggregated data sources. The limitations of this

approach – and their implications for estimating policy impacts – are discussed in greater detail in

the following section.

5 The Impacts of Alternative Electricity Pricing Schemes

Our goal is to identify the winners and losers resulting from the shift from time-invariant electricity

pricing schemes to RTP and ToU, using our estimated income distribution at the household level.

We analyze the distributional impacts along two dimensions – across income groups and within

income groups – based on the changes in monthly electricity bills that are based in changes that

the Spanish electricity market underwent.

5.1 Spanish Context

The Spanish electricity market offers a unique natural experiment to assess the distributional effects

of RTP and ToU, as the default household tariff includes elements of both. Specifically, electricity

bills consist of three elements: a fixed charge based on contracted capacity, a volumetric charge

27An exception to the better fit is Madrid. Our utility data only cover select parts of the city and region, and thus
the household sub-sample is not as comparable to the CEX region sub-sample. This is an important reason why we
do not use the CEX moments explicitly in the estimation, but rather use them for validation purposes. The other
reason is that the regions in the CEX survey are at the state level, rather than the province, limiting our number of
regions further.
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based on consumption, and taxes.28 Schematically, a household’s bill can be written as:29

Billi =

pkki +
∑
h,d,m

pehdm kWhi,hdm

 (1 + τ),

where pk is the regulated per-kW capacity price and ki is the household’s contracted capacity;

pehdm is the volumetric energy price faced in hour h, day d, and month m, and kWhi,hdm is the

household’s electricity consumption; τ is the energy tax rate.

Capacity charge. The first element, the fixed capacity charge, requires households to pay a

regulated price for their contracted power, which reflects the maximum permissible demand at any

moment. This contracted power is chosen annually and it represents a substantial share of the

energy bill, about one-third of the monthly bill on average.30 In addition, contracted capacity

increases with house size and installed appliances. Thus, it tends to be highly correlated with

income, as already shown in Figure 2.

Volumetric charge. The second element, the volumetric charge, depends on the energy price

and the household’s consumption. The retail energy price consists of two components:

(i) A regulated access charge, which recovers transmission, distribution, and policy costs. Dur-

ing our sample period, it was time-invariant by default, denoted f , though households could opt into

ToU prices, denoted fhd, with cheaper off-peak rates (e.g., nights and weekends) but no monthly

variation. Only 14% of households in our data adopt ToU. The access charge represented around

40% of the total energy charge during our sample period (4.4 cents Euro/kWh). A 2021 reform

subsequently made ToU tariffs mandatory and more extreme. The new structure divides the day

into three periods: peak (10:00–14:00 and 18:00–22:00 on weekdays), shoulder (8:00–10:00, 14:00–

18:00, and 22:00–00:00 on weekdays), and off-peak (all other hours, including weekends and nights).

These fees differ substantially: shoulder and off-peak tariffs amount to 30% and 3% of the peak

tariff, respectively.31 After this policy change, the access charge during peak times was significant

and larger than the average wholesale price.32

(ii) The market component of the volumetric price, which is, by default, a direct passthrough of

the real-time wholesale prices, phdm, which are geographically uniform. Although households may

opt out of real-time pricing (RTP) by contracting with competitive suppliers—most of whom offered

time-invariant tariffs p during our study period—RTP remained widespread due to substantial

28This tariff structure applies only to households with peak demand below 10 kW. Those exceeding this threshold
must contract with a competitive retailer, which typically offers time-invariant rates. Households must also have
a smart meter installed. By the end of 2015, nearly 12 million smart meters had been installed in Spain, with
approximately 10.19 million successfully integrated into electricity suppliers’ information and telecommunication
systems. By 2018, all Spanish households (28.02 million) had smart meters installed.

29Details on the construction of annual bills follow the weighting procedure described in the original manuscript.
30The price is 42 euros per kW of contracted power annually during our sample period.
31When considering the switch to ToU, we rely on these tariffs, normalized to ensure revenue neutrality.
32See Enrich et al. (2024) for further details on the before and after of the TOU policy change.
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Figure 3: Price fluctuations over time (real-time, monthly, and annual prices)
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inertia in retail choice (Fowlie et al., 2021; Hortaçsu et al., 2017; Enrich et al., 2022). Figure 3

illustrates the evolution of real-time electricity prices over our sample period. Daily, monthly, and

seasonal fluctuations driven by underlying wholesale conditions are passed through one-to-one into

retail prices. While within-day variation is present, it is relatively modest compared to experimental

settings where peak prices increase by 200–600% (Harding and Sexton, 2017), resulting in limited

evidence of demand response (Fabra et al., 2021). By contrast, the monthly variation is considerably

larger.

All households also pay a uniform 21% VAT and a 4.864% special tax on electricity consumption.

5.2 Counterfactual bills

To isolate the role of time variation in each volumetric component, we use smart-meter data and

observed prices to compute three counterfactual electricity bills: a Real-Time Pricing (RTP) bill

with real-time wholesale prices and non-ToU access charges, denoted BillRTPi ; a Time-of-Use (ToU)

bill with ToU access charges and time-invariant prices, BillToUi ; and a “flat” bill with non-ToU

access fees and constant prices,BillFLATi . The time-invariant components f and p are calibrated

to be revenue-neutral relative to their time-varying counterparts.
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The resulting bill shocks are:33

∆BillRTPi = BillRTPi −BillFLATi = (1 + τ)
∑
h,d,m

(phdm − p) kWhi,hdm,

∆BillToUi = BillToUi −BillFLATi = (1 + τ)
∑
h,d,m

(fhd − f) kWhi,hdm.

To distinguish hourly from monthly sources of variation under RTP, we also construct a monthly

time-invariant price that is revenue-neutral within each month, pm. The corresponding bill is

denoted BillMONTH
i . This allows us to decompose the RTP effect into a within-month component

driven by hourly price variation and an across-month component driven by monthly variation:

∆BillRTPi = (BillRTPi −BillMONTH
i ) + (BillMONTH

i −BillFLATi ),

which can be written as

∆BillRTPi = (1 + τ)
∑
h,d,m

[(phdm − pm) + (pm − p)] kWhi,hdm.

The across-month component arises only under RTP because ToU tariffs do not vary across

months. Therefore, bill changes under ToU depend exclusively on within-month variation.

5.3 Policy shocks along income

We start by analyzing the heterogeneity in bill impacts across income groups. Tables 1 and 2 and

Figure 4 classify households into five national income quintiles and report the bill impacts following

a switch from a time-invariant annual price to RTP and ToU.

The analysis delivers two main takeaways. First, the transition to real-time pricing appears

nearly distributionally neutral, with minimal impact on monthly bills across income groups.34 In

contrast, the switch to ToU pricing exhibits markedly stronger progressive distributional effects.

The magnitude of these effects varies substantially depending on the method used to measure

income: our estimated household-level income distribution based on the GMM approach yields

stronger results than the näıve alternative of relying on zip code-level income data.

Table 1 presents average monthly household electricity bills under the alternative pricing schemes,

both for the overall population and across the five income quintiles, with households classified

using our GMM-based approach. Variation in household electricity bills arises from differences

in both consumption levels and temporal usage patterns, and these effects differ across pricing

schemes. On average, households consume approximately 251 kWh of electricity per month, with

33The fixed-capacity charge is identical across scenarios and therefore does not affect differences. Taxes scale the
differences proportionally without changing signs.

34Due to the absence of December data, we may underestimate potential regressive effects of RTP, as lower-income
households are more likely to rely on electric heating. We discuss the distributional impact channels in Section 6,
and specifically the HVAC ownership channel in Section 6.2.
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Table 1: Monthly bills under alternative pricing schemes

Mean Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

KWhi 251.4 229.3 246.0 253.0 260.0 268.3
BillRTPi 55.4 48.4 53.5 55.9 58.2 60.6
BillToUi 55.4 47.8 53.0 55.7 58.6 61.5
BillFLATi 55.4 48.4 53.5 55.9 58.3 60.6
% losers (RTP ) 36.8 36.8 36.6 36.6 36.7 37.4
% losers (TOU) 45.6 38.7 41.5 44.4 49.0 54.4

Notes: This table reports household-level bills for the prices observed in our sample (RTP), for an alternative
ToU pricing, and for the flat alternative. There are 1,303,350 households. All units are measured in
e/month, except for KWhi, which is measured in kWh/month and the percent of losers. Average monthly
bills include energy, taxes, and other components of the bill such as contracted power fees. The % of losers
refers to those households whose bill increase after the switch from the time-invariant tariff. The quintile
categories are obtained from the procedure described in Section 4, and used to compute the weighted
averages by quintile, reported in columns.

high-income households consuming more on average than low-income households, and thus paying

higher monthly bills.

Differences in consumption patterns do not affect the relative bills paid under RTP versus its

time-variant alternative, which remain proportional to average consumption. Additionally, the

share of households that experience an increase in their electricity bills upon switching from flat-

rate pricing to RTP remains relatively stable around 37% across the income distribution, with only

a slight increase from 36.6% for the second and third quintiles to 37.4% for the fifth quintile.

In contrast, the transition from flat rates to ToU pricing induces more pronounced distributional

impacts. Specifically, the magnitude of bill changes is more substantial: households in the lowest

income quintile save 0.6e/month, whereas those in the highest quintile incur an average increase of

0.9e/month. Moreover, the proportion of households with higher bills under ToU is significantly

higher in the top income quintile (54.4%) compared to the bottom quintile (38.7%).

Figure 4 plots the predicted bill impacts across income groups, showing that the predictions

vary significantly depending on whether we use our estimated household-level income distribution

(as in Table 1) or a zip code-level income distribution (the näıve approach). Under our proposed

method, the shift to Time-of-Use (ToU) pricing has pronounced distributional effects. Ignoring

within–zip code income heterogeneity obscures these progressive effects: the näıve approach yields

predicted bill impacts that are nearly flat across income groups. The intuition behind this is that

the näıve approach can only capture the impact correlated with geographical factors, missing the

impacts that are explained by household types.35

To explore the channels, Figure 5 decomposes the bill impacts of the switch to RTP into within-

month and across-month components. Panel (a), which relies on our estimated household income

35In Appendix C.2.2, we use Monte Carlo simulations to evaluate the extent to which the two-step approach and
the näıve approach capture the true impact. The simulation results in Figure C.5 roughly replicate our main policy
findings: the two-step procedure provides strong progressive results that align with the true impact, while the näıve
approach yields slightly progressive results.
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Figure 4: Bill changes due to the switch of tariffs [Euro/Month]
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Notes: This figure represents the monthly bill increase when moving from an annual time-invariant price to RTP

or ToU. Results are reported for the five national income quintiles, with household income classified according

to our estimated income (GMM) or to the zip code income (näıve). The shaded areas represent the confidence

intervals that account for uncertainty in our estimated measure of income.

Table 2: Average bill and volatility changes from the switch to RTP

RTP Bills ToU Bills Flat Bills
GMM Näıve GMM Näıve GMM Näıve

Quintile 1 0.36 0.34 0.30 0.28 0.33 0.29
Quintile 2 0.35 0.33 0.29 0.28 0.31 0.29
Quintile 3 0.33 0.33 0.27 0.27 0.29 0.29
Quintile 4 0.31 0.33 0.26 0.27 0.27 0.29
Quintile 5 0.30 0.32 0.24 0.27 0.25 0.28

Notes: The table reports the average bill changes from the switch to RTP. The first two columns report monthly

bill volatility changes. For each household, we calculate the standard deviation of its monthly bills divided by the

household’s average monthly bill. In this table, we report the average volatility of all households by inferred income

quintiles. The middle two columns report the estimated percentage of losers by income quintiles from the GMM and

the näıve approaches. The last two columns report average bill changes for losers and winners separately.
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Figure 5: Decomposition of the distributional impact of RTP
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(a) GMM approach
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(b) Näıve approach

Notes: These figures decompose the bill change when moving from an annual time-invariant price to

monthly prices (pink hashed bars) and from monthly prices to RTP (red bars), for the five national

income quintiles. Panel (a) classifies households according to our estimated income (GMM approach),

while Panel (b) relies on the zip code level income (näıve approach). Note that these figures represent

the national average, which hides the heterogeneity in the bill impacts across regions.

distribution, reveals stronger distributional patterns for each source of price variation compared

to Panel (b), which is based on the näıve approach using zip code-level income data. Once again,

relying on aggregated zip code-level information tends to obscure the underlying distributional

effects.

Interestingly, the progressivity of the within-month component is nearly offset by the regressivity

of the across-month component, resulting in an overall distributionally neutral effect reported

above. However, this decomposition reveals an important nuance: bill volatility increases under

RTP, particularly for lower-income households.

Indeed, one concern with time-varying electricity pricing is that lower-income households may

struggle to cope with increased month-to-month bill variability, given that they often face binding

monthly budget constraints that align with the frequency of their income. The literature on credit

constraints in developing countries (e.g., Jack and Smith (2020); Berkouwer and Dean (2022),

among many others) suggests that such liquidity constraints can impose significant opportunity

costs.

Table 2 investigates this issue by reporting bill volatility under each pricing regime (RTP, ToU,

and time-invariant pricing) for all income quintiles, using both the GMM-based and näıve income

classification approaches. While the näıve approach indicates only modest differences in bill volatil-

ity across the income distribution, these disparities become more pronounced when household-level

income is estimated using the GMM approach.

Our results confirm the above concern: bill volatility increases for all income quintiles under

RTP relative to time-invariant pricing, with the first (lowest) income quintile experiencing the

21



largest bill volatility. Specifically, bill volatility for the first quintile is 0.36 under RTP and 0.33

under flat bills. This heightened volatility among lower-income households is largely driven by

their greater reliance on electric heating, as discussed in Section 5. In contrast, ToU reduces bill

volatility relative to time-invariant pricing across all income quintiles, but particularly so for the

low-income group.

5.4 Robustness

Our method is subject to several researcher choices that can impact the results. In Appendix D,

we provide estimates of Figure 4 under alternative specifications. Figure D.1 suggests that the

nonparametric and the semiparametric approaches give similar results. Our results are also robust

to different choices of semi-parametric specifications. The different specifications consider alterna-

tive numbers of clustering types, the inclusion of observable or inferred characteristics (contracted

power and electric heating), and a range of controls. We find that our estimator is robust to these

modifications, also at the regional level, as shown in Figure D.2.

5.5 Methodology discussion

In addition to our robustness tests, we explore how to guide the researcher’s choices in other

settings. Based on the econometric assumptions and Monte Carlo results, we suggest that the

choice of consumer types adheres to three principles: (i) the types and explanatory variables should

correlate with consumer income and have shared common support across zip codes, (ii) the types

should correlate with the policy impact of interest, and (iii) conditional on types, the remaining

unobserved income should not directly impact the effects of the policy.

The first principle implies that the income distribution, conditional on types, should either

be identical across zip codes (the assumption for our non-parametric approach) or that any rel-

evant differences can be explained by observable factors (the assumption of our semi-parametric

approach). The goal is that the remaining unexplained income distribution is uncorrelated with

the policy effects (principle (iii)).

The second principle calls for bundling households along the dimensions that are most important

for the policy at hand, which also makes principle (iii) more likely to hold. For example, for a policy

about non-linear pricing, identifying types based on total monthly consumption would be natural.

Rather than assuming that income is fully sorted along consumption to bound outcomes, as in

Borenstein (2012), the methodology allows for different income distributions in each consumption

bin. It also does not require to assume a particular relationship between the two.

To ensure that the third principle holds, one natural step derving from principle (ii) is to classify

consumers based on the impact of the policy itself. If the two are uncorrelated, the method will

correctly fail to find an association between the two. As a caveat, in our context and given the small

number of zip codes per region and the substantial randomness in policy impacts, one could worry

that this would overclassify households spuriously. Instead, we classify households based on general

consumption patterns, which are correlated to the bill impacts and contracted power, rather than
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based on final impacts, which can fluctuate substantially. However, as part of our specifications

in the robustness section in Appendix D, we include bill impacts as a predictor of income, and we

reassuringly find very similar results.

In Appendix C.2, we provide Monte Carlo exercises that provide further intuition for these

principles. We also examine what happens when our assumptions are not fully satisfied. If the

types are not accurate enough to predicted household income, then the inferred income will be less

correlated with the true income (Figures C.2 and C.3), leading to attenuation. Furthermore, if the

policy impact is not fully explained by consumer types, or if true income directly impacts the policy

outcome due to bias in our inferred income, our approach cannot fully reveal the true distributional

impact (Figure C.5). Nevertheless, it is noteworthy that our approach consistently outperforms the

näıve approach. We also use the Monte Carlo exercises to parallel some our robustness checks.

When we chose fewer types or classify zip code groups in a sub-optimal, the results from the

two-step approach are still closer to the true data than the näıve approach.

6 Channels explaining heterogeneous shocks

This section uncovers the bill impacts of RTP and ToU along several dimensions beyond income.

We focus on the differences between households regarding their consumption profiles, their HVAC

status, and their locations.

As noted by Cronin et al. (2019) and Douenne (2020), there exists substantial heterogeneity in

energy use within income groups. This variation may arise from limitations in measuring house-

hold income or long-term wealth, but also reflects genuine differences in consumer preferences and

behavioral choices, even when income is held constant.

Panels (a) and (d) of Figure 6 illustrate the distribution of bill impacts resulting from a shift

from an annual time-invariant price to RTP and ToU, respectively. These distributions are shown

for the 1st, 3rd, and 5th income quintiles. Under RTP, the distributions exhibit relatively mod-

est differences across income groups, but substantial dispersion within each quintile. Still, the

maximum monthly gains or losses do not exceed 1 e.

In contrast, ToU pricing results in significantly greater variation both across and within income

quintiles. Consistent with the progressive effects of ToU discussed above, the distribution of bill

impacts for the 1st quintile is visibly shifted to the left compared to those of the 3rd and 5th

quintiles, indicating greater savings for lower-income households. Moreover, the magnitude of

gains and losses is larger under ToU, with some households experiencing gains or losses exceeding

4 eper month.

For both pricing alternatives, the large differences in impacts within each income quintile hide

other sources of heterogeneity, such as location and its implications for heating and air conditioning

(HVAC), an issue on which we will elaborate further below. Panels (b) and (c) split the distributions

between those regions where electric heating is prevalent (“electric heating regions”), from those

where it is not (“non-electric heating regions”). The comparison of both plots shows that low-
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Figure 6: Bill shock due to the switch to RTP and ToU
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(b) RTP – Electric heating regions
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(c) RTP – Non-electric h. regions
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(d) ToU – All regions
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(e) ToU – Electric heating regions
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(f) ToU – Non-electric h. regions

Notes: These figures show the distribution of the bill changes due to the switch to RTP (upper panels) and ToU

(lower panels) in the first, third and fifth income quintiles. Panel (a) and (d) show the distributions at the national

level for RTP and ToU respectively, while Panels (b)-(e) and (c)-(f) distinguish between regions with a high and a

low prevalence of electric heating, respectively. Together, they show that there is substantial heterogeneity within

income groups, with the highest income group tending to have the most volatility. The differences within and across

the quintiles are much more pronounced for ToU than for RTP.
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Figure 7: Load curve by income quintiles

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour

0.02

0.03

0.04

0.05

0.06

0.07

Da
ily

 M
ar

ke
t S

ha
re

1st Quintile
2nd Quintile
3rd Quintile
4th Quintile
5th Quintile

(a) Hourly consumption shares [%]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Da
ily

 M
ar

ke
t S

ha
re

 (n
or

m
al

ize
d)

1st Quintile
2nd Quintile
3rd Quintile
4th Quintile
5th Quintile
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Notes: Panel (a) shows the average consumption patterns over the day for the five national income quintiles. Panel

(b) depicts the normalized hourly consumption shares, defined as the share of the household’s daily consumption at

a given hour, over the average share in the sample. This shows that while consumption levels are not very different

across income groups, their distribution across time is highly heterogeneous.

income households are relatively more negatively impacted in the electric heating regions, while

the reverse applies to the non-electric heating regions. This finding suggests that the distributional

impacts are not only driven by income differences but also by household locations and HVAC status.

The following section is devoted to disentangling these channels.

6.1 Consumption Profiles

Our previous results demonstrate that transitioning from time-invariant monthly pricing to RTP or

ToU has progressive distributional effects, i.e., lower-income households tend to benefit from these

changes. These outcomes are primarily driven by differences in daily consumption patterns across

households, as we document below.

Panel (a) in Figure 7 shows the average hourly consumption profiles for households across the

five income groups. While the overall differences between income groups appear small,36 there is

notable variation in their consumption patterns throughout the day. To highlight this heterogeneity,

Panel (b) plots the share of daily consumption for each hour relative to the sample average by

income group.37 Households in the higher-income group tend to consume more during peak hours

within the day compared to the sample average, whereas those in the lower-income group consume

relatively more during off-peak hours of the day.

6.2 HVAC status

Our previous results also show that transitioning from annual to time-invariant monthly pricing

tends to disadvantage low-income households – an effect observed exclusively under RTP. This

36These differences would be more pronounced if Madrid were excluded, as it is the only region where high-income
households tend to consume less electricity. This may be due to the widespread use of natural gas in Madrid.

37For instance, we calculate the share of daily consumption at noon for a given income group and compare it to
the overall average.
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Figure 8: Load curves by HVAC status and income
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(a) Hourly consumption pattern [kWh] - Heating
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(b) Annual consumption pattern [kWh] - Heating
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(c) Hourly consumption pattern [kWh] - AC
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(d) Annual consumption pattern [kWh] - AC

Notes: These figures show consumption profiles over the day (the left panels) and the year (the right panels) for house-

holds with electric heating (the upper panels) and AC (the lower panels). Results are reported for low (1st quintile)

and high-income households (5th quintile). The lines are mean hourly consumption for each group of consumers,

truncating the top 1 percentile kWh observations. Panel (a) on the left presents the hourly consumption profiles for

winter months, highlighting the differences between households with and without electric heating. Similarly, panel

(c) focuses on the profiles for summer months.

outcome is primarily driven by differences in seasonal consumption patterns, which in turn are

largely determined by the presence of electric heating (EH) and air conditioning (AC). These

appliances significantly affect both the total volume and the temporal distribution of electricity

consumption, as we show next.

Panels (a) and (b) in Figure 8 illustrate the average consumption patterns of households with

and without electric heating throughout the day and across the year, respectively. Panels (c) and

(d) do the same for AC. As shown, there are notable differences in consumption patterns based

on HVAC status. Households with electric appliances consume considerably more electricity at all

hours compared to those without, and their consumption patterns tend to be peakier, especially in

the case of heating.

Additionally, there are strong seasonal effects. As expected, households with electric heating

consume more during the winter months (October through April), while those with AC see higher

consumption during the summer months (June through September). For heating, these seasonal

effects are more pronounced among high-income households compared to low-income households.

In contrast, the seasonal impact of AC usage is relatively consistent across income groups.

26



Figure 9: Bill changes [Euro] due to RTP by electric HVAC status
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(b) Across months effects

Notes: These figures plot the distribution of the bill changes due to the switch to RTP for households

with no electric HVAC, with AC only, with electric heating only, or with both. The within-month and

across-months effects are shown in Panels (a) and (b), respectively. The bigger bill increases are suffered

by households with electric heating due to the across months effect.

In general, higher-income households are more likely to have AC, while lower-income households

are more likely to rely on electric heating. This disparity is due to the high installation costs

of alternative heating systems (e.g., gas or central heating) compared to electric heating, which

typically uses low-cost plug-in radiators. Specifically, 13% of households in the 1st income quintile

and 15% in the 5th quintile have AC, while 27% of the 1st quintile and 12% of the 5th quintile use

electric heating.38

Since electricity prices tend to be higher during winter months when electric heating is in use, the

shift from an annual price to RTP disproportionately impacts low-income households. The across-

months effect offsets the progressive within-month effects discussed in the previous subsection. In

the case of ToU, this countervailing effect is muted since ToU tariffs remain unchanged across the

year.

This pattern aligns with the evidence presented in Figure 9, which decomposes the bill impacts

of RTP into within-month (Panel (a)) and across-month (Panel (b)) effects, disaggregated by

HVAC status. As shown in both panels, the greater volatility of winter prices –approximately

ten times higher than in summer –amplifies the bill impacts for households using electric heating.

Moreover, while the average within-month effect appears largely independent of HVAC status, the

across-month effect is significantly influenced by it. Households with air conditioning (AC) tend to

benefit under RTP, whereas those relying on electric heating experience losses, consistent with the

mechanisms discussed above.

38These results are presented in Figure B.2a in the Appendix. For AC, the differences are even more pronounced
when accounting for location. Warmer, lower-income regions in Spain have more AC use, with only minor differences
within regions.
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6.3 Location

Another key factor driving the distributional impacts of RTP and ToU is regional heterogeneity.

Consumption patterns are closely tied to local weather conditions, influencing HVAC usage even

when controlling for income. Additionally, regional disparities in the availability of heating infras-

tructure – particularly gas – affect the prevalence of electric heating. For example, while 90% of

households in Madrid have access to gas heating systems, this figure drops to 60% in more rural

areas like Galicia. Castilla y León has the lowest incidence of electric heating, with only 7% of

households using it, compared to the national average of 19%, as the region relies more heavily on

gas and oil heating systems.39

Figure 10 takes a look at the distributional impacts by region (this figure is analogous to

Figure 4, but it reports each region separately). Again, across all specifications, one can see that

our GMM-based approach consistently yields more pronounced distributional effects across income

groups.

The RTP effects tend to be small and can be progressive or regressive depending on the region,

while the ToU effects tend to be progressive throughout (except the fifth quintile in Castilla-y-León,

where the effects are noisier). Overall, we conclude that HVAC ownership plays a critical role in

shaping the distributional impacts of RTP, as it significantly affects both the level and the seasonal

profile of electricity consumption. In contrast, the distributional effects of ToU pricing are less

sensitive to HVAC status, since ToU does not depend on seasonal consumption patterns to the

same extent.

7 Conclusions

We assess the distributional impacts of transitioning from time-invariant electricity pricing to Real-

Time Pricing (RTP) and Time-of-Use (ToU) pricing in the Spanish electricity market, where RTP

is the default for households and ToU on access fees has recently become mandatory. While Fabra

et al. (2021) found that the adoption of RTP had little effect on aggregate household electricity

consumption, its differential impact across income groups remains an open question. This is a

critical issue, as concerns about adverse distributional outcomes have hindered broader RTP im-

plementation in other regions. In this context, the distributional effects of ToU serve as a useful

benchmark for evaluating those of RTP.

Using hourly electricity consumption data from a large sample of Spanish households, combined

with detailed socio-demographic information, we were able to assess how household electricity bills

have changed under RTP and ToU and how these changes affect different income groups. Addition-

ally, the consumption data allowed us to infer ownership of electric heating and air conditioning –

key factors in determining the distributional effects of the pricing schemes.

Our analysis indicates that the shift to RTP has been largely distributionally neutral. This

null effect can be decomposed into two offsetting channels: variation in electricity prices within

39See Table A.1 in the Appendix for details.
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Figure 10: RTP and ToU Effects by Region
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(a) RTP, Madrid
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(b) ToU, Madrid
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(c) RTP, Galicia
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(d) ToU, Galicia
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(e) RTP, Castilla y León
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(f) ToU, Castilla y León
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(g) RTP, Castilla-La Mancha
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(h) ToU, Castilla-La Mancha

Notes: These figures display the impact on monthly electricity bills (in e) resulting from a shift from
time-invariant pricing to either RTP (first column) or ToU (second column), for four representative
regions in Spain. Results are presented under two income classification methods: our proposed GMM-
based approach and a näıve alternative that ignores within-zipcode heterogeneity. Under ToU pricing,
the effects are progressive in all regions analyzed. In contrast, the distributional impact of RTP varies
by region – being either progressive or regressive – depending on the prevalence of specific end-use
equipment (e.g., electric heating or air conditioning) in each area. The shaded areas represent the
confidence intervals that account for uncertainty in our estimated measure of income.
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months and across months. We find that low-income households tend to consume more electricity

during lower-priced hours within a month, making RTP progressive in that dimension. However,

this benefit is offset by a regressive across-month effect: low-income households rely more heavily

on electric heating and therefore consume more during the winter, when prices tend to be higher.

In contrast, the shift to ToU pricing has a clear progressive impact. Because ToU tariffs remain

constant throughout the year, the gains from low-income households consuming relatively more

during off-peak hours are not offset by seasonal variation in electricity consumption. As a result,

lower-income households benefit more from ToU than higher-income groups.

These findings underscore the usefulness of quantifying the potential distributional impacts of

alternative pricing schemes – and more broadly, of a wide range of public policies for which our

proposed method can prove useful. Indeed, a crucial step in this process is uncovering income

heterogeneity within zip codes, as failing to do so may obscure key distributional effects. Our

proposed methodology offers a path forward by enabling such granularity when actual household-

level income data is not available, and it holds promise for evaluating the distributional consequences

of policies in other settings as well.

References

Al-Wakeel, A., J. Wu, and N. Jenkins (2017). K-means based load estimation of domestic smart

meter measurements. Applied energy 194, 333–342.

Allcott, H. (2011). Rethinking real-time electricity pricing. Resource and Energy Economics 33 (4),

820–842. Special section: Sustainable Resource Use and Economic Dynamics.

Bajari, P., J. T. Fox, and S. P. Ryan (2007). Linear Regression Estimation of Discrete Choice Models

with Nonparametric Distributions of Random Coefficients. American Economic Review 97 (2),

459–463.

Banzhaf, S., L. Ma, and C. Timmins (2019). Environmental Justice: The Economics of Race, Place,

and Pollution. Journal of Economic Perspectives 33 (1), 185–208.

Berkouwer, S. B. and J. T. Dean (2022). Credit, Attention, and Externalities in the Adoption of

Energy Efficient Technologies by Low-Income Households. American Economic Review 112 (10),

3291–3330.

Berry, S., J. Levinsohn, and A. Pakes (1995). Automobile Prices in Market Equilibrium. Econo-

metrica 63 (4), 841.

Berry, S., J. Levinsohn, and A. Pakes (2004). Differentiated Products Demand Systems from a Com-

bination of Micro and Macro Data: The New Car Market. Journal of Political Economy 112 (1),

68–105.

30



Bleemer, Z. and A. Mehta (2022). Will studying economics make you rich? a regression discon-

tinuity analysis of the returns to college major. American Economic Journal: Applied Eco-

nomics 14 (2), 1–22.

Blonz, J. A. (2022). Making the best of the second-best: Welfare consequences of time-varying

electricity prices. Volume 9(6).

Bonhomme, S., K. Jochmans, and J. Robin (2016). Non-parametric estimation of finite mixtures

from repeated measurements. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 78 (1), 211–229.

Bonhomme, S., T. Lamadon, and E. Manresa (2022). Discretizing Unobserved Heterogeneity.

Econometrica 90(2), 625–643.

Bonhomme, S. and E. Manresa (2015). Grouped Patterns of Heterogeneity in Panel Data. Econo-

metrica 83 (3), 1147–1184.

Borenstein, S. (2005). The long-run efficiency of real-time electricity pricing. The Energy Jour-

nal 26 (3).

Borenstein, S. (2007). Wealth transfers among large customers from implementing real-time retail

electricity pricing. The Energy Journal 28 (2).

Borenstein, S. (2012). The Redistributional Impact of Nonlinear Electricity Pricing. American

Economic Journal: Economic Policy 4 (3), 56–90.

Borenstein, S. (2013). Effective and equitable adoption of opt-in residential dynamic electricity

pricing. Review of Industrial Organization 42 (2), 127–160.

Borenstein, S. (2017). Private net benefits of residential solar pv: The role of electricity tar-

iffs, tax incentives, and rebates. Journal of the Association of Environmental and Resource

Economists 4 (S1), S85–S122.

Borenstein, S. and S. Holland (2005). On the Efficiency of Competitive Electricity Markets with

Time-Invariant Retail Prices. RAND Journal of Economics 36 (3), 469–493.
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Online Appendix

“The Distributional Impacts of Real-Time Pricing”

A Data sources

A.1 Income data

In this appendix, we provide further details on the demographic data that we use in our analysis.

These data are provided by the Spanish National Institute of Statistics, Instituto Nacional de

Estad́ıstica (INE), and correspond to the most recent census (2011). The data contain information

at the census level on population, age, sex, education, dwelling types (main dwelling, secondary

dwelling, or empty dwelling), number of rooms per dwelling, and net surface area of dwellings for

each census district in Spain. We have also collected detailed information on the distribution of

income at the district (and sometimes section) level.40 We only include places from which we have

electricity consumption data. This limits our analysis to four regions: Galicia, Castilla y León,

Madrid, and Castilla-La Mancha. Figure A.2 plots the location of these provinces.

We complement the INE data with the MB Research data at the postal code level. INE

data reports the median and mean income per household for each census. MB Research reports

the distribution of household income, where the cutoffs are representative of the quintiles in the

national distribution of income. Therefore, these two income distributions complement each other

in different parts of the support.

We know the zip code of each household, but not its census. To create a crosswalk between

postal codes and census districts, we use shapefiles of Spanish postal codes and census districts

provided by the INE. Census districts are matched to postal codes with which they have significant

intersection.41 On average, postal codes are matched to around seven census districts. Once census

districts and postal codes are matched, census district data are aggregated at the postal code level.

We find that some zip codes are not present in the shapefiles. To complement the map between zip

codes and districts, we use data with latitude and longitude for the universe of street addresses in

the postal code system (“callejero”).42 A district section and a zip code are matched if the latitude

and longitude of the address are within that section.

A.2 Smart meter data

As explained in the main text, we partner with a large distribution utility in Spain to obtain de-

identified smart meter data at the household level. Our dataset contains information about the

40For confidentiality reasons, sections are often not reported as they are a fairly small geographical units. For small
to medium-sized municipalities, data are often only available at the municipality level, which often coincides with the
postal code. Very small municipalities may not have their data reported.

41The matching algorithm is as follows: if 90% or more of a census district’s area is contained within a postal code,
or if 90% or more of a postal code’s area is contained within a census district, then the census district is matched to
the postal code.

42This information can be obtained at https://www.ine.es/prodyser/callejero/.
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Table A.1: Statistics on the availability of heating systems

State Heating availability Electric heating
Total (1) (2) (3)

Castilla y León 90.8 8.6 2.0 6.9 0.4
Castilla -La Mancha 86.2 15.3 1.9 13.5 –
Galicia 59.9 14.8 4.1 10.9 0.4
Madrid 90.4 15.6 8.3 8.3 0.5

Notes: (1) Individual electric boiler (2) Electric radiators and accumulators (3) Radiant wire. Source: Spanish
National Statistics Institute (INE), Household and Environment Survey 2008 (https://www.ine.es/dynt3/inebase/
index.htm?type=pcaxis&path=/t25/p500/2008/p01/&file=pcaxis&L=0).

hourly electricity consumption for close to four million Spanish households from January 1st, 2016

to May 31st, 2017. It was provided to us by the distribution subsidiary of Naturgy, which is one

of the largest Spanish utility companies. One of the advantages of our data is that we have access

to the universe of meters in a given geography where Naturgy operates as the single distribution

company (regardless of whether they contract with a different retailer).43 This is mostly the case

of Madrid and Galicia, although Naturgy is also present in other zip codes scattered through other

parts of Spain.44

After treating outliers with overly zero consumption observations or missing zip code data, 45

the final sample contains 1,303,350 households, covering 750 zip code regions. We further drop

December 2016 and May 2017 observations for data quality reasons, which leaves 15 months in our

sample period (January 2016 to November 2016, and January 2017 to April 2017). The data include

hourly consumption information (in kWh) for each household served by the utility, leading to more

than 13 billion data points of hourly consumption data. In addition to hourly consumption, a key

part of the identification is the contracted power of the home, which is the maximum consumption

allowed at any time. Since households pay a fixed monthly fee as a function of their contracted

power, they have incentives to contract it according to their actual electricity needs. This is highly

correlated with household income and is therefore crucial to our identification strategy. Figure A.1

plots its distribution. The dashed line divides households into two categories: high- and low-

contracted power. we use this categorical variable in our estimation.

A.3 HVAC statistics by province

We obtain province-level statistics about mode of heating and air conditioning to discipline our

algorithm to infer appliance ownership. These moments are obtained from the Spanish National

Statistics Institute (INE) and are displayed in Table A.1.

43Most zip codes are only associated with a single distribution company, as Spain is organized in large distribution
areas. Municipalities typically only belong to one, with the exception of the city of Madrid. However, in Madrid we
have several zip codes, and most of the zip codes belong to only one of two utilities in the city.

44The geographic distribution of households is shown in the Appendix in Figure A.2.
45The algorithm for cleaning outliers drops a household from the sample if more than 25% of its consumption

observations are zero, or if more than 5% are null.
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Figure A.1: Distribution of household contracted power
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Notes: This figure plots the distribution of contracted power in our data. The dashed line divides

households into two categories: high and low contracted power. We use this categorical variable in our

estimation.

Figure A.2: Geographic distribution of households
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A.4 Consumption expenditure survey

We use data from the Spanish consumption expenditure survey (‘Encuesta de Presupuestos Famil-

iares’ or EPF in Spanish), provided by the Spanish National Statistics Institute (INE). We use the

2016 consumption survey because it is the one that best matches our sample period.

In the microdata, we observe each individual entry of the survey, which can be geographically

linked to the province and contains a survey weight to ensure the representativeness of the survey.

We have 5,517 individuals who belong to the geographical areas covered by our utility. The annual

nature of CEX data makes it unfit to examine the distributional impact of real-time pricing on

households. However, these data allow us to validate the predictions from our methodology in

Section 4.

The survey contains detailed expenditure data for electricity consumption. In particular, it asks

for annual electricity expenditures and annual electricity consumption, which are then averaged at

the monthly level. Additionally, it contains the income decile at the individual level. We make

assumptions regarding the components of the electricity bill so that we can additionally infer

contracted power at the individual level. Table A.2 provides summary statistics of these variables

along the quintiles of the income distribution.

More precisely, to infer the contracted power, we assume the following. During the sample

period, we know that electricity taxes are 21% on the total bill, and an additional 5.113% on most

of the bill (other than the ad hoc fees), and that the annual price per contracted power is 42

euros per kW, or 3.33 euros per month (plus taxes). These are regulated fees that are observed.

We also need to make assumptions about other ad hoc fees contained in the bill (e.g., to pay for

the smart meter and other services), which we assume to be 1.5 euros based on the context. We

also need to assume a pre-tax price per kWh of 12.45 cents, which we take from the average of a

quarterly survey of electricity prices by the competition authority (CNMC).46 Variations in these

assumptions provide comparable correlations of income and contracted power.

Given quantity Qi and bill amount Bi, contracted power is then given by,

CPi =
Bi/1.21− 0.1245 ∗Qi ∗ (1.05113)− 1.5

3.33
·

We also compute the bill share of the contracted power costs by computing:

BSi =
CPi ∗ 3.33 ∗ 1.21

Bi
·

We see that contracted power is correlated with income and that contracted power represents a

larger share of households’ bills for high-income households, given that these are the ones that tend

to contract larger amounts than they typically use.

46These data are also used in Enrich et al. (2022) and described there in more detail.

4



Table A.2: Summary statistics from the CEX survey 2016

Quintile Expenditure Quantity Contracted Power Bill share of CP

1 43.34 181 2.88 0.30
2 54.72 221 4.01 0.33
3 58.52 236 4.35 0.34
4 61.99 246 4.77 0.34
5 71.80 281 5.74 0.35

Notes: Own elaboration based on the Spanish National Statistics Institute (INE), Household Expen-
diture Survey (https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176806&
menu=ultiDatos&idp=1254735976608). Only observations from Castilla-La Mancha, Castilla-y-León, Galicia, and
Madrid are included. Expenditure is reported as a monthly average of total electricity bills (in euros), quantity is
reported in monthly kWh consumed, and contracted power is reported in kW and is estimated based on the two
previous variables and a set of assumptions regarding average prices, taxes, and fees during the period.
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B Inferring HVAC status

In this appendix, we infer household HVAC status by exploiting the richness of the smart meter

data. The idea of using high-frequency data to infer HVAC status has been applied to engineering

papers like Westermann et al. (2020) and Dyson et al. (2014).

We use a daily regression approach based on weather data.47 For each household, we first run the

following regression to obtain the correlation between its electricity consumption and temperature

in winter and summer:

kWhid =αi + βiHDDHDD
i
d + βiCDDCDD

i
d + εid (B.1)

where kWhid is the hourly consumption of household i in day d, and HDDi
d and CDDi

d are the

heating degree days and cooling degree days for that day. The coefficients of interest are βiHDD
and βiCDD, which measure how much more a household consumes in response to a day in need

of heating (HDD, typically in the winter) and a day in need of cooling (CDD, typically in the

summer), respectively.

Once we have an estimate of βiHDD and βiCDD, we set some thresholds to determine whether a

household is assigned a flag for owning electric heating (HDD coefficient) and/or air conditioning

(CDD coefficient). First, we only flag them if the estimate we obtain is statistically significant.

Second, we assign appliance ownership only to the highest estimates, to match the share of appliance

ownership in our data. Finally, and given that this reduces the amount of information provided

by our imputed appliance ownership, we preserve the information in the coefficients in our final

estimation and consider a robustness check in which these coefficients are directly used to infer

income, rather than their discretized “dummy variable” versions.

To show that our classification of household types is informative about their consumption be-

havior, we plot consumer daily load curves by identified HVAC status in Figure B.1. EH owners

have relatively higher consumption during both day and night because electric heating devices are,

in general, more energy-intensive than AC, as shown in Panel (a). We also observe that high con-

sumption is particularly high during winter months for households that have electric heating, while

it peaks in the summer for those households with air conditioning, as shown in Panel (b).

Once we perform the income estimation, we can also check the correlation between income and

HVAC mode. As shown in Figure B.2, we find that electric heating is particularly concentrated on

the low-income bins, while air conditioning is positively correlated with income, which is intuitive.

We also show that the patterns of HVAC status and income can change depending on the region.

Although air conditioning tends to be associated with high income (for regions with a significant

share of air conditioning), electric heating is negatively correlated with income, particularly in the

most urban regions (Madrid), as newer buildings tend to rely on city gas for heating.

47Alternatively, we also implemented an estimator based on hourly data. The two approaches provided similar
results, and therefore we use the simpler procedure based on daily outcomes.
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Figure B.1: Load curves by HVAC status
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(a) Hourly consumption pattern [kWh]
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(b) Annual consumption pattern [kWh]

Notes: These figures show consumption profiles over the day (the left panels) and the year (the right panels) for

households with electric heating, AC, or both.

Figure B.2: HVAC status and Income
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C Validation of the methodology

C.1 CEX validation

We report the estimated relationship between income and electricity consumption using the GMM

approach and the näıve approach. In Figure C.1, we compare the estimated results to the CEX

survey data. In all provinces, the näıve approach captures only across zip code income variation

and cannot explain the relationship between income and consumption. On the contrary, the GMM

approach performs better even though the relationship between income and electricity consumption

is flatter than in the CEX survey data.

Two reasons explain this departure. First, our approach has limitations. As explained in Section

C.2.2 and C.5, when income has a direct impact on the variable of interest (e.g., the bill change

impact in our main context or electricity consumption in this section), our approach does not

capture the full relationship. We believe there is no direct impact of income on RTP bill changes

other than through the correlation of income with consumer types (e.g., lifestyle, ...). However,

there might be a direct impact of income on electricity consumption. Thus, in Figure C.1, the

GMM results have a lower slope than the CEX survey results, as expected in the simulation C.5.

Second, our data covers only a subset of zip codes, especially in Madrid, where we only have data

in relatively low-income zip codes. The different coverage between our sample and the CEX sample

accounts for the differences across the two figures.

C.2 Monte Carlo simulation

We conduct Monte Carlo simulations to evaluate the effectiveness of our two-step procedure com-

pared to the näıve approach and the true data.

In these exercises, we simulate household incomes, types, and policy impacts. We then infer

household income and the distributional impact using both the naive approach and our two-step

procedure, under the assumption that household income is not directly observed. We compare

the inferred household income with the true household income in Section C.2.1 and the estimated

distributional impact with the true distributional impact in Section C.2.2.

Section C.2.1 suggests that the two-step procedure performs significantly better than the näıve

approach in approximating household income. We also examine the sensitivity of this result to

our identification assumptions and assess how misspecification affects the outcomes. Section C.2.2

further demonstrates that the two-step procedure can capture the full distributional impact when

income affects policy outcomes only indirectly through its correlation with household types. In

contrast, the näıve approach can capture only location-based variation. When income directly

influences policy outcomes (e.g., when a policy explicitly targets high- or low-income groups), the

two-step method cannot fully recover the impact but still performs significantly better than the

näıve approach.
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Figure C.1: Relationship between income and electricity consumption: Comparing survey results,
the imputed income results, and the näıve income results
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(a) Castilla y León
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(b) Castilla-La Mancha

1st 2nd 3rd 4th 5th
National Income Quintiles

150

175

200

225

250

275

300

325

350

M
on

th
ly

 C
on

su
m

pt
io

n 
[k

W
h]

gmm
naive
survey results

(c) Galicia
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(d) Madrid

Notes: These figures show that the imputed income from our approach is closer to the actual income from the survey

data as compared to the näıve approach. The figures depict the relationship between electricity consumption and

income for the four regions in our sample. In each figure, the gray line respresents the CEX survey results, the blue

line represents the results using the GMM approach, and the dashed blue line those from using the näıve approach.

C.2.1 Monte Carlo assessment of estimation of household income

Our estimator provides a refined probabilistic assignment of income to households that is more

granular than the income distribution at the zip code level. In order to understand the performance

of our estimator in small samples and under misspecification, we perform a Monte Carlo simulation.

We use the smart-meter household-level consumption data from our sample and create a data

generating process in which we know each individual’s income. We assign types to individuals based

on their consumption profiles, which we then use to assign them to a certain income bin, respecting

an assumed joint distribution of household types, income, and zip code. We then aggregate the

randomly-assigned incomes to the zip code level, so that we can compute the distribution of income

at the zip code level, which is what the econometrician can observe.

The detailed steps to create the data underlying the Monte Carlo simulation are as follows:

1. We classify households into five types for each group using a kmeans algorithm based on

their hourly consumption shares and total consumption.

2. We assign a zip code number to each household based on a pre-established probability that

type θ belongs to zip code z, Pr(z|θ). There are 50 zip codes and we classify them into 10

groups.
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3. We sort types based on their peak consumption share (hours 8 - 23). We assign the more

“peaky” types to a higher income distribution, reflecting the within-month correlation of peak

consumption and income.

4. This distribution is fixed conditional on a type and is the same across all zip codes within a

group, but we introduce some noise to capture unmodelled randomness in the data. We also

allow different zip code groups to have different income-type relationships.

5. Household zip codes and the zip-code-level income distribution, together with the household-

level consumption patterns, is what is observed for the estimation.

These steps allow us to create an individual and zip-code-level distribution of income that is

consistent with the underlying types and assumptions. It also allows us to create an aggregate

version of the income data at the zip code level.

We then compare two methods:

• the näıve approach, which assigns the zip code distribution of a zip code to all households

within a zip code,

• our two-step approach, which classifies first households within a region into N kmeans types

based on their consumption pattern and then estimate income distribution of each type by

fitting the aggregate distribution of income via GMM.

As explained in the main text, our method’s goal is to better infer the income distribution of

a given household. In our Monte Carlos, we know the true type of households and can compute

their expected income as households’ true income. We compare it to inferred income. In the case

of the näıve approach, this amounts to imputing the same expected income to all consumers in a

zip code. In the case of the two-step method, the imputation will be by estimated type. Figure C.2

shows that the näıve distribution of income tends to be much flatter (i.e., homogeneous) than the

true distribution. Using our method, the inferred expected distribution is much better aligned with

the truth. This fit is naturally improved as we allow for more types and data.

Another way to see this result is to show the inferred distribution of income of households

belonging to a given quintile. In our Monte Carlos, we simulate a household’s quintile. A household

simulated to belong to the fifth quintile should have an underlying expected distribution with higher

income. However, neither of these objects are known to the econometrician. We find that the näıve

approach fails to estimate that households belonging to high quintile have a higher distribution of

income. Instead, the probability of having a certain level of income is very similar across households

along all quintiles, as shown in Panel C.3a. As we allow for more types, the distribution of income

of households becomes more different along quintiles, as shown in Panel C.3c.

Finally, we examine if our inferred income is still more correlated with true income than with the

näıve approach in the presence of misspecification in Figure C.4. In our non-parametric estimator,

a key identification assumption is that the income distribution for each consumer type is identical
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Figure C.2: Simulation results: Imputed income by household type
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(a) 2 types, sample size 200
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(b) 3 types, sample size 200

2.5 3.0 3.5 4.0 4.5
True Income

2.5

3.0

3.5

4.0

4.5

Im
pu

te
d 

In
co

m
e

Truth
Census naïve approach
Gmm 2-step approach

(c) 4 types, sample size 200
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(d) 5 types, sample size 200
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(e) 5 types, sample size 500
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(f) 5 types, sample size 1000

across zip codes. Importantly, we group zip codes that are similar to each other. What happens

when these zip code groups are not in line with the true data generating process? We find that

misclassifying zip codes into heterogeneous groups still leads to an improved correlation between

imputed income and the true expected income, as long as there is some commonality. While the

distribution of income could be improved, it is still much more correlated with the underlying

true income distribution than the näıve income distribution, as seen in both Panel (a) and (b) in

Figure C.4. This suggests that potentially misspecifying the zip code group would still substantially

improve accuracy relative to the näıve approach, yielding an income approximation close to the

true distribution.

Overall, the Monte Carlo simulation is useful to highlight the value of our approach. With

enough flexibility, we are able to unveil within-zip-code heterogeneity that would be muted using a

näıve approach. As long as we allow for sufficient flexibility and have enough data, this classification

appears to improve the inferred household income in expectation.

C.2.2 Monte Carlo assessment of the two-step procedure

Once we obtain an improved estimate of the income distribution, we then use it so summarize the

association between income and the impacts of dynamic pricing. Under what conditions can our

estimates uncover the full distributional impact of a given policy?

We perform an additional Monte-Carlo simulation to inform this discussion by expressing our

policy assessment exercise as a regression framework. Assume that the true data generation process

behind the distributional impacts is governed by the following equation, where the key primitives
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Figure C.3: Simulation results: Distribution of imputed income conditional on true income quintile
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(b) 2 types, sample size 500
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(c) 5 types, sample size 500

Figure C.4: Simulation results: Imputed income (5 types, wrong zip code group, sample size 1000)
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(b) Distribution of imputed income for each true income quintile

are highlighted in red for clarity:

impacti,z = t× θi + k × inci + σz × (φz + φzipgroup) + σe × εiz. (C.1)

The policy impact, impacti,z, on household i in zip code z is a function of household i’s type θi,

income inci, its zip code’s fixed effect φz, and the zip code group’s fixed effect φzipgroup. The error

term εiz is orthogonal to all other variables, and it is normally distributed ∼ N(0, 1). The red

coefficients capture the scale of each component: t represents how the individual type affects the

final impact, k represents how individual income affects the impact, and σz and σe are scale the

importance of regional fixed effects and unobservables, respectively.

The true distributional impact is the summation of the direct impact of income (k) and the

impact through the correlation between income and other variables in equation (C.1), including

location impacts σz and individual impacts t. The zip code level variation is observed, and types

and income are inferred.

In our simulations, we explore whether our method can recover the full impact through all these

channels. To do so, we calculate the income effects when we use the true distribution of income,

our inferred income distribution, and the näıve zip code income distribution. To make the problem

interesting, household heterogeneity (types) and income are correlated. Thus, using the wrong

measure of income (näıve approach) can substantially bias the results.
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Figure C.5: Assessing the method with a Monte-Carlo simulation

1st 2nd 3rd 4th 5th
National Income Quintiles

4

3

2

1

0

1

2

3

4

Im
pa

ct

true impact
naive
gmm

(a) Full bias correction
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(b) Partial bias correction
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(c) No näıve bias

Notes: The figure shows Monte Carlo results for the estimation of the policy impacts. The true policy impacts are

depicted with the dashed line. Case (a) “Full bias correction” shows a simulation in which our type and zip code are

sufficient to fully recover to effects, t = 1, k = 0, σz = 1, σe = 1. Case (b) “Partial bias correction” shows that the

method recovers only part of the effect if the unobserved income realizations are correlated with the policy impacts,

t = 1, k = 1, σz = 1, σe = 1. The method still provides a substantial improvement when compared to the näıve

estimator. Case (c) shows that the näıve estimator provides the correct policy impacts only if the zip code variation

is driving the effect, t = 0, k = 0, σz = 1, σe = 1.
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Figure C.5 reports the estimated policy impacts across these specifications under different pa-

rameter assumptions. When k = 0, income affects policy outcomes only indirectly through its

correlation with household types and other observables. In this case, the two-step approach can

fully recover the distributional impact. In other words, types, individual characteristics, and zip

codes must together be sufficient statistics for determining policy impacts. Panel (a) shows that in

the case, the GMM approach can capture the full distributional impact through individual types

and household locations, while the näıve approach can even be biased in the opposite direction of

the true effects.

Our method improves the assigned distribution of income to a given household but cannot

predict the exact realized income of a household. In this case, realizations of household income (not

the expected distribution) directly enter the policy impacts via omitted variable bias. We therefore

explore how well our approach captures the distributional impact and how much it improves upon

the näıve approach when k 6= 0, even if imperfectly specified.

As shown in Panel (b), if the policy impact is correlated with the remaining unobserved income,

we will only partially identify the effect: the portion correlated with household types and locations.

The näıve approach captures only location-level variation. Because our method additionally cap-

tures variation correlated with household types, it achieves a substantial improvement over the

näıve approach. The näıve estimator, by contrast, continues to be biased in the wrong direction.

Finally, when both k and t are 0, the two approaches yield the same results, both consistent

with the true impact, as shown in panel (c). In this case, the policy affects households only

through geographical locations, and the true causal impact of individual types and income is zero.

All variation lies at the zip-code level and, therefore, the effects are well captured by the näıve

distribution of income. This assumption is probably rejected in most applications, but it is a good

benchmark to understand the conditions under which the näıve estimator provides a valid answer.
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C.3 Cross-validation

While the Monte Carlo exercises have validated our two-step approach, this section uses real data

evidence to conduct further checks. We have performed two sets of tests to uncover the advantages of

our GMM approach relative to the näıve approach. First, we conduct cross-validation by including

a subsample of zip codes in each province and predicting the out-of-sample income distribution for

the other zip codes. For each province, with Z zip code regions, we repeat the following procedure

Z times:

1. Drop one zip code z.

2. Estimate household income with the Z−1 zip code using the semi-parametric GMM approach.

3. Predict household income for households in zip code z using observed household types and

demographics in zip code z and estimation results from step 2.

4. Aggregate inferred household income to the zip code level and obtain the inferred income

distribution for all Z zip codes.

5. Get out of sample error by comparing zip code z’s inferred income distribution with observed

census income distribution.

6. Get in-sample error by assessing the difference for the rest Z − 1 zip codes.

Figure C.6 reports the distribution of in-sample and out-of-sample prediction errors for all

provinces. The two distributions are similar, which suggests that our approach captures the true

relationship between income and consumer types. It can therefore handle out-of-sample predictions.

Figure C.6: Distribution of prediction errors
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Notes: These figures illustrate the distribution of zip-code-level prediction errors.
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D Robustness to alternative specification

We examine the robustness of our results to the number of types, both kmeans and discrete

categories such as heating mode or contracted power.

Specifications We consider several specifications that aim at examining the robustness to the

number of types in the k-means clustering procedure, together with the controls that are used in

the semi-parametric estimator.

• Non-parametric

– kmeans (2 to 4 kmeans groups) combined with heating interacted with low and high

contracted power types.

– kmeans (2 to 4 kmeans groups) combined with any HVAC interacted with low and high

contracted power types.

– kmeans (2 to 4 kmeans groups) combined with heating, non-heating low contracted

power, and non-heating high contracted power types (fewer types).

• Semi-parametric All the different groupings above combined with several parametric con-

trols that allow for individual flexibility along the following covariates:

– Spec 1: individual contracted power, consumption, peak consumption, and slopes from

HVAC estimation [main].

– Spec 2: individual contracted power, consumption, zip-code unemployment, zip-code

share above 50 years old.

– Spec 3: only slopes from HVAC estimation.

– Spec 4: consumption, peak consumption, and the loss from RTP.

Figure D.1 shows that the results are consistent across a wide range of specifications. Given

that we find that the impacts of RTP are small and not particularly related to income, the results

can be somewhat sensitive to the specification, but the qualitative take away is the same. For the

ToU results, the qualitative and quantitative results are very robust across all these specifications.

Figure D.2 displays the same sensitivity results by region. We find that the results are very

consistent across this wide range of specifications for Madrid and Galicia, the regions with most

households. For the other two regions, the results are also qualitatively consistent across specifica-

tions but somewhat more noisy.
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Figure D.1: Robustness Specifications
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(a) RTP Robustness
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(b) ToU Robustness

Notes: These figures display the robustness of our main results to alternative specifications. Alter-
native parametric specifications lead to consistent outcomes. The dashed teal lines display results
from non-parametric specifications.
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Figure D.2: Robustness by Region
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(a) RTP, Madrid
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(b) ToU, Madrid
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(c) RTP, Galicia
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(d) ToU, Galicia
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(e) RTP, Castilla y León
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(f) ToU, Castilla y León
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(g) RTP, Castilla-La Mancha
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(h) ToU, Castilla-La Mancha

Notes: These figures display the robustness of our main results to alternative specifications. Alter-
native parametric specifications lead to consistent outcomes. The dashed teal lines display results
from non-parametric specifications.
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